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Motion & 3D Perception

1

• Our world is dynamic & 3D

YouTube-8M World Cup



Optical Flow

2optical flow

• Apparent motion between two video frames

frame 1 & 2



Depth
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• Distance to the camera

• Rectified stereo matching

• Unrectified depth estimation 

from posed images

Problem settings:



Previous Methods
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• Design specialized architectures for each specific task

Optical Flow

PWC-Net, CVPR 2018

RAFT, ECCV 2020

PSMNet, CVPR 2018

AANet, CVPR 2020

Stereo Matching Depth Estimation

DPSNet, ICLR 2019

DeMoN, CVPR 2017



Our Approach: UniMatch
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• A unified model for flow, stereo and depth



Why Unified Model?
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• Focus on the development of a single architecture

• Enable cross-task transfer: reuse pretrained models

• Towards general perception systems



Typical Stereo Pipeline
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• Feature extraction → cost volume construction → cost aggregation →

disparity computation → disparity refinement

scanline
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Leaning-based Stereo Pipeline
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• Maintain traditional pipeline, replace handcrafted components with 

learnable networks

AANet

Xu and Zhang. AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020



Optical Flow Pipeline
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Depth Estimation
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Plane-sweep stereo



Depth Estimation Pipeline
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DPSNet

Im el al. DPSNet: End-to-end Deep Plane Sweep Stereo. ICLR 2019



Summary of Previous Pipelines
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flow/disparity/depth
feature1

feature2

task-specific

convolutions

task-specific 

cost volume

• Task-specific cost volume size: 

• Task-specific convolutions:

flow: [H, W, (2R+1)2], stereo: [H, W, D, {C}], depth: [H, W, K, {C}]

- Convolutions are dependent on the cost volume size

- Different types of convolutions (2D, ConvGRU, or 3D)



Our Insight
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• Unified dense correspondence matching (UniMatch)

• Learn strong features with a Transformer (in particular cross-attention)



Methodology Comparison
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matching
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Transformer

Previous task-specific methods

Our unified model

Xu et al. GMFlow: Learning Optical Flow via Global Matching. CVPR 2022, Oral



Flow Matching
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• Inputs:

• Feature extraction:

• Global correlation:

• Softmax normalization:

• Correspondence:

• Optical flow:



Stereo Matching
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• Inputs:

• Feature extraction:

• Horizontal global correlation:

• Softmax normalization:

• Correspondence:

• Disparity (positive):



Depth Matching
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• Inputs:

• Feature extraction:

• Discretize depth range                    :

• Warping:

• Correlation:

• Softmax normalization:

• Depth:
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Feature Extraction

• Key: model cross-view interactions with cross-attention

(self-attn + cross-attn) * 6

• Efficient implementation: shifted local window (Swin) attention

Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021



Why Cross-Attention?
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cross-view similarity

feature aggregation

• Feature aggregation via cross-view similarity

• Similar features will be enhanced! (matching becomes easier😊)



Ablation: Transformer Components
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Cross-attention contributes most



Architecture So Far
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Experimental Comparison

22

Our method is significantly better, especially for large motion (s40+)



Ablation: Global vs. Local Matching
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Global matching is significantly better for large motion



1D Cross-Attention for Stereo
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1D cross-attention for stereo is faster and better, while the learnable 

parameters remain exactly the same for all tasks



When Matching Fails?
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img0 img1

out-of-boundaryocclusion



Propagation
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flow disparity depth

• Observation: image and flow/disparity/depth share structure similarity

• Self-attention for propagation:



Propagation
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Propagation greatly improves occluded and out-of-boundary pixels



Unified Model
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Hierarchical Matching
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1/8

1/8

1/4

1/4

• An optional hierarchical matching refinement at 1/4 feature resolution

• All the learned parameters still remain exactly the same for all tasks



Comparison with RAFT

30Teed and Deng. RAFT: Recurrent All Pairs Field Transforms for Optical Flow. ECCV 2020



Cross-Task Transfer

31Flow to Depth Transfer



Cross-Task Transfer

32Flow to Depth Transfer



Cross-Task Transfer

33
Faster training speed & better performance



System-level Comparisons
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• Use a few additional local refinements (flow: 6, stereo: 3, depth: 1)

• Name our models for flow, stereo and depth as GMFlow, GMStereo

and GMDepth (Global Matching)
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Benchmark Comparison: Flow & Stereo

35

1st places on Sintel (clean) and Middlebury Stereo (RMS metric)



Visual Comparison: Flow
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Our GMFlow better captures fast moving small object than RAFT



Visual Comparison: Stereo
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Our GMStereo produces sharper object structures



Benchmark Comparison: Depth

38

State-of-the-art or competitive performance while being much faster

ScanNet



More Visual Results
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More Visual Results
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Online Demo

41https://huggingface.co/spaces/haofeixu/unimatch

https://huggingface.co/spaces/haofeixu/unimatch


Code & Model Available
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https://github.com/autonomousvision/unimatch

Model Zoo: 20+ models

https://github.com/autonomousvision/unimatch/blob/master/

MODEL_ZOO.md

Code

https://github.com/autonomousvision/unimatch
https://github.com/autonomousvision/unimatch/blob/master/MODEL_ZOO.md


Conclusion & Discussion

43

• Cross-view Transformer features + matching → unified model

• Cross-task transfer

• Real-time inference speed?

• Train all three tasks jointly?

• Unsupervised learning?
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