

Unifying Flow, Stereo and Depth Estimation

Haofei Xu^{1,2} Jing Zhang³ Jianfei Cai⁴ Hamid Rezatofighi⁴ Fisher Yu¹ Dacheng Tao⁵ Andreas Geiger^{2,6}

¹ETH Zurich ²University of Tübingen ³The University of Sydney ⁴Monash University ⁵JD Explore Academy ⁶MPI for Intelligent Systems, Tübingen

https://haofeixu.github.io/unimatch/

Motion & 3D Perception

• Our world is *dynamic* & 3D

YouTube-8M

World Cup

Optical Flow

Apparent motion between two video frames

frame 1 & 2

optical flow

Depth

• Distance to the camera

Problem settings:

- Rectified stereo matching
- Unrectified depth estimation from posed images

Previous Methods

• Design specialized architectures for each specific task

RAFT, ECCV 2020

Optical Flow

PSMNet, CVPR 2018

AANet, CVPR 2020

Stereo Matching

DeMoN, CVPR 2017

Figure 2: Overview of the DPSNet pipeline.

DPSNet, ICLR 2019

Depth Estimation

Our Approach: UniMatch

• A *unified* model for flow, stereo and depth

video frames

posed images

depth

Why Unified Model?

• Focus on the development of a single architecture

• Enable cross-task transfer: reuse pretrained models

• Towards general perception systems

Typical Stereo Pipeline

 Feature extraction → cost volume construction → cost aggregation → disparity computation → disparity refinement

Leaning-based Stereo Pipeline

 Maintain traditional pipeline, replace handcrafted components with learnable networks

AANet

Xu and Zhang. AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020

Optical Flow Pipeline

feature extraction

local cost volume

Depth Estimation

Plane-sweep stereo

Depth Estimation Pipeline

DPSNet

Im el al. DPSNet: End-to-end Deep Plane Sweep Stereo. ICLR 2019

Summary of Previous Pipelines

• *Task-specific* cost volume size:

flow: [H, W, (2R+1)²], stereo: [H, W, D, {C}], depth: [H, W, K, {C}]

- *Task-specific* convolutions:
 - Convolutions are dependent on the cost volume size
 - Different types of convolutions (2D, ConvGRU, or 3D)

Our Insight

- Unified dense correspondence matching (UniMatch)
- Learn strong features with a Transformer (in particular cross-attention)

video frames

stereo pair

posed images

depth

Methodology Comparison

Previous task-specific methods

Our unified model

Xu et al. GMFlow: Learning Optical Flow via Global Matching. CVPR 2022, Oral

Flow Matching

- Inputs: $I_1 I_2$
- Feature extraction: $F_1, F_2 \in \mathbb{R}^{H \times W \times D}$
- Global correlation: $C = \frac{F_1 F_2^T}{\sqrt{D}} \in \mathbb{R}^{H \times W \times H \times W}$
- Softmax normalization: $M = \operatorname{softmax}(C) \in \mathbb{R}^{H \times W \times H \times W}$
- Correspondence: $\hat{G} = MG \in \mathbb{R}^{H \times W \times 2}$ $G \in \mathbb{R}^{H \times W \times 2}$
- Optical flow: $V = \hat{G} G \in \mathbb{R}^{H \times W \times 2}$

Stereo Matching

- Inputs: $I_1 I_2$
- Feature extraction: $F_1, F_2 \in \mathbb{R}^{H \times W \times D}$

- Horizontal global correlation: $C_{disp} \in \mathbb{R}^{H \times W \times W}$
- Softmax normalization: $M_{disp} = softmax(C_{disp}) \in \mathbb{R}^{H \times W \times W}$
- Correspondence: $\hat{G}_{1D} = M_{disp} P \in \mathbb{R}^{H \times W}$ $P = [0, 1, 2, \cdots, W 1] \in \mathbb{R}^{W}$
- Disparity (positive): $V_{\text{disp}} = G_{1\text{D}} \hat{G}_{1\text{D}} \in \mathbb{R}^{H imes W}$ $G_{1\text{D}} \in \mathbb{R}^{H imes W}$

Depth Matching

- Inputs: $I_1 I_2$
- Feature extraction: $F_1, F_2 \in \mathbb{R}^{H \times W \times D}$

- Discretize depth range $[d_{\min}, d_{\max}]$: $[d_1, d_2, \cdots, d_N]$
- Warping: $\mathcal{H}(\hat{G}_{2D}) = K_2 E_2 E_1^{-1} d_i K_1^{-1} \mathcal{H}(G_{2D}) \in \mathbb{R}^{H \times W \times 3}$ $F_2^i \in \mathbb{R}^{H \times W \times D}$
- Correlation: $C^i = \frac{F_1 \cdot F_2^i}{\sqrt{D}} \in \mathbb{R}^{H \times W}$ $C_{\text{depth}} = [C^1, C^2, \cdots, C^N] \in \mathbb{R}^{H \times W \times N}$
- Softmax normalization: $M_{depth} = softmax(C_{depth}) \in \mathbb{R}^{H \times W \times N}$

• Depth: $V_{\text{depth}} = M_{\text{depth}} G_{\text{depth}} \in \mathbb{R}^{H \times W}$ $G_{\text{depth}} = [d_1, d_2, \cdots, d_N] \in \mathbb{R}^N$

Feature Extraction

- Key: model cross-view interactions with cross-attention
- Efficient implementation: shifted local window (Swin) attention

Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021

Why Cross-Attention?

- Feature aggregation via cross-view similarity
- Similar features will be enhanced! (matching becomes easier (2))

Ablation: Transformer Components

cotup	Things (val)	Sintel	(train)	Param	
setup	clean	clean	final	(M)	
full	6.67	2.28	3.44	4.2	
w/o cross attn.	10.84	4.48	6.32	3.8	
w/o position	8.38	2.85	4.28	4.2	
w/o FFN	8.71	3.10	4.43	1.8	
w/o self attn.	7.04	2.49	3.69	3.8	

Cross-attention contributes most

Architecture So Far

Experimental Comparison

Mathad	#blocks	T	Param				
	#DIOCKS	EPE	<i>s</i> ₀₋₁₀	s_{10-40}	s_{40+}	(M)	
	0	18.83	3.42	6.49	49.65	1.8	
	4	10.99	1.70	3.41	29.78	4.6	
cost volume + conv	8	9.59	1.44	2.96	26.04	8.0	
	12	9.04	1.37	2.84	24.46	11.5	
	18	8.67	1.33	2.74	23.43	15.7	
	0	22.93	8.57	11.13	52.07	1.0	
	1	11.45	2.98	4.68	28.35	1.6	
Transformer + softmax	2	8.59	1.80	3.28	21.99	2.1	
	4	7.19	1.40	2.62	18.66	3.1	
	6	6.67	1.26	2.40	17.37	4.2	
conv + softmax	6	17.06	5.79	7.74	40.03	5.1	

Our method is significantly better, especially for large motion (s40+)

Ablation: Global vs. Local Matching

matching	Т	Things (val, clean)					
space	EPE	s_{0-10}	s_{10-40}	s_{40+}			
global	6.67	1.26	2.40	17.37			
local 3×3	31.78	1.19	12.40	85.39			
local 5×5	26.51	0.89	6.67	76.76			
local 9×9	19.88	1.01	2.44	61.06			

Global matching is significantly better for large motion

1D Cross-Attention for Stereo

1D cross-attention for stereo is faster and better, while the learnable parameters remain exactly the same for all tasks

When Matching Fails?

img0

occlusion

out-of-boundary

Propagation

- Observation: image and flow/disparity/depth share structure similarity
- Self-attention for propagation:

$$\hat{\boldsymbol{V}} = \operatorname{softmax}\left(\frac{\boldsymbol{F}_1 \boldsymbol{F}_1^T}{\sqrt{D}}\right) \boldsymbol{V}$$

Propagation

Propagation greatly improves occluded and out-of-boundary pixels

Unified Model

Hierarchical Matching

- An optional hierarchical matching refinement at 1/4 feature resolution
- All the learned parameters still remain exactly the same for all tasks

Comparison with RAFT

Teed and Deng. RAFT: Recurrent All Pairs Field Transforms for Optical Flow. ECCV 2020

Cross-Task Transfer

Flow to Depth Transfer

Cross-Task Transfer

Flow to Depth Transfer

Cross-Task Transfer

(a) Flow to stereo transfer: error curves of disparity prediction error *vs.* numbers of training steps.

(b) Flow to depth transfer: error curves of depth prediction error *vs.* numbers of training steps.

Faster training speed & better performance

System-level Comparisons

• Use a few additional local refinements (flow: 6, stereo: 3, depth: 1)

 Name our models for flow, stereo and depth as GMFlow, GMStereo and GMDepth (Global Matching)

Benchmark Comparison: Flow & Stereo

1st places on Sintel (clean) and Middlebury Stereo (RMS metric)

Visual Comparison: Flow

Our GMFlow better captures fast moving small object than RAFT

Visual Comparison: Stereo

Our GMStereo produces sharper object structures

Benchmark Comparison: Depth

						_	Dataset	Model	Abs Rel	Sq Rel	RMSE	RMSE log
							RGBD-SLAM	DeMoN [37] DeepMVS [104] DPSNet [63]	0.157 0.294 0.154	0.524 0.430 0.215	1.780 0.868 0.723	0.202 0.351 0.226
Model	Abs Rel	Sq Rel	RMSE	RMSE log	Time (s)			IIB [29] GMDepth	0.095 0.101	- 0.177	0.550 0.556	0.167
DeMoN [37] BA-Net [20] DeepV2D [64]	0.231 0.161 0.057	0.520 0.092 0.010	0.761 0.346 0.168	0.289 0.214 0.080	0.69 0.38 0.69		SUN3D	DeMoN [37] DeepMVS [104] DPSNet [63] IIB [29] GMDepth	0.214 0.282 0.147 0.099 0.112	1.120 0.435 0.107 - 0.068	2.421 0.944 0.427 0.29 3 0.336	0.206 0.363 0.191 - 0.146
GMDepth	0.059	0.019	0.179	0.082	0.04			DeMoN [37] DeepMVS [104]	0.556	3.402	2.603	0.391
		Scan	let			_	Scenes11	DPSNet [63] IIB [29] GMDepth	0.056 0.056 0.050	0.144 - 0.069	0.714 0.523 0.491	0.140 - 0.106

State-of-the-art or competitive performance while being much faster

More Visual Results

More Visual Results

Online Demo

https://huggingface.co/spaces/haofeixu/unimatch

Code & Model Available

Model	Params (M)	Time (ms)	Download
GMFlow-scale1-things	4.7	26	download
GMFlow-scale1-mixdata	4.7	26	download
GMFlow-scale2-things	4.7	66	download
GMFlow-scale2-sintel	4.7	66	download
GMFlow-scale2-mixdata	4.7	66	download
GMFlow-scale2-regrefine6-things	7.4	122	download
GMFlow-scale2-regrefine6-sintelft	7.4	122	download
GMFlow-scale2-regrefine6-kitti	7.4	122	download
GMFlow-scale2-regrefine6-mixdata	7.4	122	download

https://github.com/autonomousvision/unimatch

https://github.com/autonomousvision/unimatch/blob/master/ MODEL_ZOO.md

Model Zoo: 20+ models

Code

Conclusion & Discussion

- Cross-view Transformer features + matching \rightarrow unified model
- Cross-task transfer
- Real-time inference speed?
- Train all three tasks jointly?
- Unsupervised learning?